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• Please write completely your name, student ID number and study program.

• You can choose to answer FOUR questions out of FIVE available questions. If you answer
all FIVE of them, extra points can be granted (if correct).

• For every question, write your answer neatly on blank papers and write down your name
and student number on the top of each page.

• This is an OPEN book exam and you are allowed to use calculator or computer. Use of
WIFI is forbidden.

• Please write down your answer clearly and with proper argumentation when-
ever needed. Providing only the final answers without proper argumentation
is NOT acceptable and will NOT be graded. Please, write your answer using a pen,
not a pencil.

• Whenever we think is appropriate, a follow-up ORAL examination to sus-
pected cases will be arranged before the final grade is determined. In this
case, the follow-up oral examination will be based on the questions of the final
exam and the final grade will be based on the same weighting factor as before
where the adjusted grade from the oral examination will be used instead that
replaces the final exam grade.

• If you return the sheets, then your exam will be graded, unless you explicitly write ”do
not grade” on the first page. If your exam is graded, then the grade will be registered.

• Hints are sometimes providied after a questions to be used only in the case in which you
did not answer a previous question.

For the grader only
Exercise 1 Exercise 2 Exercise 3 Exercise 4 Exercise 5

Points X

Bonus X X X X

1



Name: Student ID:
Study Program: BME/ A. Physics/ Astronomy/ A. Math/ Exchange/ Pre-master

1. Exercise 1 (10pts). Consider the air-levitation system shown in Figure 1. This system
has a fan in the bottom, which ”injects” air in-flux that acts on a air-balloon of mass m
in a closed-cylinder.

Figure 1: Air levitation system.

To simplify the modeling (control-oriented), assume that the motion of the balloon occurs
only in the y direction as shown in Figure 1. Since the cylinder is closed, the air flux inside
is constant. Then, the following volumetric flow rate relation holds

AfVf = AbVb, (1)

where Af and Ab represent the transversal area of the cylinder and the balloon, respec-
tively; and Vf and Vb are the air velocity on the transversal sections of the fan and balloon,
respectively. By the Bernoulli principle, the drag force Fb acting on the balloon is

Fb =
1

2
AbρV

2
b

with ρ the flux density. Due the drag force, there exists a corresponding viscous friction
force (opposite to Fb) given by

Ffric =
1

2
CρAbẏ (2)

where C is the drag coefficient for the balloon.

(a) (2pts) Find a control-oriented mathematical model for the system in Figure 1.

SOLUTION: From the free body diagram in Figure 1 and Newton’s second law, we
have

mÿ = Fb −mg − Ffric

⇒ mÿ =
1

2
AbρV

2
b −mg −

1

2
CρAbẏ.

(3)

From (1) we know that

Vb =
AfVf
Ab

. (4)

Then,

mÿ =
1

2
ρ
A2
fV

2
f

Ab
−mg − 1

2
CρAbẏ. (5)

Since the drag force is a function of the fan’s velocity Vf , then the control input is
u = Vf , and the control oriented model is given by

mÿ +
1

2
CρAbẏ +mg =

1

2
ρ
A2
f

Ab
u2. (6)

Note that this model is linear in the ball’s position y, but nonlinear in the input u.
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(b) (2pts) Propose a state-space representation for the differential equation of point (a).

SOLUTION:
Let x1 = y and x2 = ẏ the state variables. Then,

ẋ1 = x2

ẋ2 =
1

m

[
−mg − 1

2
CρAbx2 +

1

2
ρ
A2
f

Ab
u2

]
,

(7)

or in vector form[
ẋ1
ẋ2

]
︸︷︷︸
ẋ

=

[
x2

−g − 1
2mCρAbx2 + 1

2ρ
A2

f

Abm
u2

]
︸ ︷︷ ︸

f(x,u)

=

[
f1(x, u)
f2(x, u)

]
. (8)

(c) (3pts) Given a constant position for the balloon y = Y , determine an operation point
(x, u) for the state space model.

SOLUTION:
Since the state model in (8) does not depend on the balloon’s position y, explicitly,
we can pick any arbitrarily constant position y = Y with respect to the fan; that is,
Y > 0. To compute the constant operation point (x, u) we need to solve the following
set of algebraic equations: ẋ = f(x, u) = 0, or[

x2

−g − 1
2mCρAbx2 + 1

2ρ
A2

f

Abm
u2

]
︸ ︷︷ ︸

f(x,u)

=

[
0
0

]
(9)

it follows that x2 = 0. Substitution of this in the second equation, and solving for u
results in

−g +
1

2
ρ
A2
f

Abm
u2 = 0 ⇐⇒ u = ±

√
2Abmg

ρA2
f

. (10)

We take only the positive solution of u because we are interested only in wind flow
in the positive direction. Hence, the operation point is

(x, u) =

([
Y
0

]
,

√
2Abmg

ρA2
f

)
. (11)

(d) (3pts) Analyze the stability of the operation point (x, u) via the linearization.

SOLUTION:
The linearized model around (x, u) is given by

δẋ = Aδx+Bδu (12)

with δx = x− x and δu = u− u

A =
∂f

∂x
(x, u)

∣∣∣∣
(x,u)=(x,u)

=

[
∂f1
∂x1

(x, u) ∂f1
∂x2

(x, u)
∂f2
∂x1

(x, u) ∂f2
∂x2

(x, u)

] ∣∣∣∣
(x,u)=(x,u)

, (13)
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and

B =
∂f

∂u
(x, u)

∣∣∣∣
(x,u)=(x,u)

=

[∂f1
∂u (x, u)
∂f2
∂u (x, u)

] ∣∣∣∣
(x,u)=(x,u)

. (14)

The partial derivatives for A are computed as follows

∂f1
∂x1

(x, u)

∣∣∣∣
(x,u)=(x,u)

= 0,

∂f1
∂x2

(x, u)

∣∣∣∣
(x,u)=(x,u)

= 1,

∂f2
∂x1

(x, u)

∣∣∣∣
(x,u)=(x,u)

= 0,

∂f2
∂x2

(x, u)

∣∣∣∣
(x,u)=(x,u)

=
∂

∂x2

(
−g − 1

2m
CρAbx2 +

1

2
ρ
A2
f

Abm
u2

)∣∣∣∣
(x,u)=(x,u)

=
∂

∂x2

(
− 1

2m
CρAbx2

) ∣∣∣∣
(x,u)=(x,u)

= − 1

2m
CρAb.

(15)

Similarly, the partial derivatives for B are

∂f1
∂u

(x, u)

∣∣∣∣
(x,u)=(x,u)

= 0,

∂f2
∂u

(x, u)

∣∣∣∣
(x,u)=(x,u)

=
∂

∂u

(
−g − 1

2m
CρAbx2 +

1

2
ρ
A2
f

Abm
u2

)∣∣∣∣
(x,u)=(x,u)

=
∂

∂u

(
1

2
ρ
A2
f

Abm
u2

)∣∣∣∣
(x,u)=(x,u)

=
ρA2

f

Abm
u

∣∣∣∣
(x,u)=(x,u)

,

=
ρA2

f

Abm

√
2Abmg

ρA2
f︸ ︷︷ ︸

u

= Af

√
2ρg

mAb
.

(16)

Substitution in (12) yields

δẋ =

[
0 1
0 − 1

2mCρAb

]
︸ ︷︷ ︸

A

δx+

[
0

Af

√
2ρg
mAb

]
︸ ︷︷ ︸

B

δu. (17)

Now, let us compute the eigenvalues of the linearized system matrix

p(s) = det(sI −A) = det

[
s −1
0 s+ 1

2mCρ

]
= s

(
s+

1

2m
Cρ

)
= 0, (18)

that is, the eigenvalues of the linearization are {0,− 1
2mCρ} . Since there is an eigen-

value at s = 0 the first Lyapunov criterion can not give a conclusion about the
stability of x for the nonlinear system in (8).

Hint: If you did not find the mathematical model in (a), use mÿ = −0.5g−2y−0.5ẏ+ cu2

4y .

(a) (2pts) Solution using the model given in the hint: mÿ = −0.5g − 2y − 0.5ẏ + cu2

4y
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(b) (2pts) Propose a state-space representation for the differential equation of point (a).

SOLUTION:
Let x1 = y and x2 = ẏ the state variables. Then,

ẋ1 = x2

ẋ2 =
1

m

[
−0.5g − 2x1 − 0.5x2 +

cu2

4x1

]
,

(19)

or in vector form[
ẋ1
ẋ2

]
︸︷︷︸
ẋ

=

[
x2

−0.5g
m −

2
mx1 −

0.5
m x2 + cu2

4mx1

]
︸ ︷︷ ︸

f(x,u)

=

[
f1(x, u)
f2(x, u)

]
. (20)

(c) (3pts) Given a constant position for the balloon y = Y , determine an operation point
(x, u) for the state space model.

SOLUTION:
To compute the constant operation point (x, u) we need to solve the following set of
algebraic equations: ẋ = f(x, u) = 0, or[

x2
−0.5g

m −
2
mx1 −

0.5
m x2 + cu2

4mx1

]
︸ ︷︷ ︸

f(x,u)

=

[
0
0

]
(21)

it follows that x2 = 0. Substitution of this in the second equation, and solving for u
results in

−0.5g

m
− 2

m
x1 −

0.5

m
x2 +

cu2

4mx1
= 0 ⇐⇒ u = ±

√
4x1
c

(0.5g + 2x1) with x1 6= 0.

(22)

Note that the nominal controller u depends of x1, and there is no any restriction on
it apart of x1 6= 0; thus, we can take any arbitrary constant x1 = Y , with Y 6= 0. In
this case, let us take the positive solution1 of u. Hence, the operation point is

(x, u) =

([
Y
0

]
,

√
4x1
c

(0.5g + 2x1)

)
with x1 6= 0.

(d) (3pts) Analyze the stability of the operation point (x, u) via the linearization.

SOLUTION:
The linearized model around (x, u) is given by

δẋ = Aδx+Bδu (23)

with δx = x− x and δu = u− u

A =
∂f

∂x
(x, u)

∣∣∣∣
(x,u)=(x,u)

=

[
∂f1
∂x1

(x, u) ∂f1
∂x2

(x, u)
∂f2
∂x1

(x, u) ∂f2
∂x2

(x, u)

] ∣∣∣∣
(x,u)=(x,u)

, (24)

1Since we do not know the nature of the mathematical model, the negative solution of u is possible.
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and

B =
∂f

∂u
(x, u)

∣∣∣∣
(x,u)=(x,u)

=

[∂f1
∂u (x, u)
∂f2
∂u (x, u)

] ∣∣∣∣
(x,u)=(x,u)

. (25)

The partial derivatives for A are computed as follows

∂f1
∂x1

(x, u)

∣∣∣∣
(x,u)=(x,u)

= 0,

∂f1
∂x2

(x, u)

∣∣∣∣
(x,u)=(x,u)

= 1,

∂f2
∂x1

(x, u)

∣∣∣∣
(x,u)=(x,u)

=
∂

∂x1

(
−0.5g

m
− 2

m
x1 −

0.5

m
x2 +

cu2

4mx1

) ∣∣∣∣
(x,u)=(x,u)

= −
(

2

m
+

cu2

4mx21

) ∣∣∣∣
(x,u)=(x,u)

= − 2

m
− 1

2m

√
c

Y
(0.5g + 2Y ), Y 6= 0,

∂f2
∂x2

(x, u)

∣∣∣∣
(x,u)=(x,u)

=
∂

∂x2

(
−0.5g

m
− 2

m
x1 −

0.5

m
x2 +

cu2

4mx1

) ∣∣∣∣
(x,u)=(x,u)

= −0.5

m
(26)

Similarly, the partial derivatives for B are

∂f1
∂u

(x, u)

∣∣∣∣
(x,u)=(x,u)

= 0,

∂f2
∂u

(x, u)

∣∣∣∣
(x,u)=(x,u)

=
∂

∂u

(
−0.5g

m
− 2

m
x1 −

0.5

m
x2 +

cu2

4mx1

) ∣∣∣∣
(x,u)=(x,u)

=
cu

2mx1

∣∣∣∣
(x,u)=(x,u)

=

√
c

m2Y
(0.5g + 2Y ), Y 6= 0.

(27)

Substitution in (23) yields

δẋ =

[
0 1

−
(
2
m + 1

2m

√
c
Y (0.5g + 2Y )

)
−0.5

m

]
︸ ︷︷ ︸

A

δx+

[
0√

c
m2Y

(0.5g + 2Y )

]
︸ ︷︷ ︸

B

δu. (28)

The characteristic equation of the linearized system is

p(s) = det(sI −A) = det

[
s −1(

2
m + 1

2m

√
c
Y (0.5g + 2Y )

)
s+ 0.5

m

]
,

= s2 +
0.5

m
s+

(
2

m
+

1

2m

√
c

Y
(0.5g + 2Y )

)
= 0.

(29)

Using the Routh-Hurwitz criterion, consider the Routh’s table

s2 1 > 0
(
2
m + 1

2m

√
c
Y (0.5g + 2Y )

)
s1 0.5

m > 0 0

s0 b1 =
(
2
m + 1

2m

√
c
Y (0.5g + 2Y )

)
> 0

Since all the values in the first column are strictly positive, we conclude that poles are
in the left half complex plane. Hence, by the first Lyapunov theorem, the operation
point (x, u) is asymptotically stable for the nonlinear system in (20).
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Table 1: System’s parameters

Parameter g Hf Af m Ab c ρ

Value 9.81 m/s2 0.025 m 0.0113 m2 0.0013 Kg 0.0154 m2 0.1 1.225 Kg/m3

2. Exercise 2 (10pts). Consider the linearized model of Exercise 1.(d), with the parameters
given in Table 1

(a) (3pts) Design a full state feedback controller such that the closed-loop system has a
natural frequency ωn = 0.25 and a damping ratio ζ = 0.004.

SOLUTION:
Using the numerical values in Table 1, matrices A and B are respectively given by

A =

[
0 1
0 −0.7255

]
, B =

[
0

12.3812

]
. (30)

The reachability matrix is

Wr = [BAB] =

[
0 12.3812

12.3812 −8.9835

]
⇒ rank(Wr) = 2. (31)

This means that the pair (A,B) is reachable, and we can construct the feedback
law δu = −Kδx + krr. The desired poles are the roots of the target characteristic
polynomial

ptg(s) = s22ζωns+ ω2
n = s2 + 0.002s+ 0.0625 = s2 + α1s+ α2, (32)

which are {−0.001± j0.2499}. To propose the canonical reachable form, consider the
characteristic polynomial associated to A in (18) with the numerical values in Table
(1), that is,

p(s) = s2 + 0.72565s = s2 + a1s+ a2. (33)

Then, the reachable canonical form is given by

ż =

[
−a1 −a2

1 0

]
︸ ︷︷ ︸

Ã

z +

[
1
0

]
︸︷︷︸
B̃

u =

[
−0.7256 0

1 0

]
z +

[
1
0

]
u. (34)

The reachability matrix W̃r = [B̃|ÃB̃] is

W̃r =

[
1 −0.7256
0 1

]
⇒ rank(W̃r) = 2. (35)

The feedback gain is

K = [α1 − a1 α2 − a2]W̃rW
−1
r = [0.005047 − 0.058441]. (36)

Here the reference r = 0 because we want δx = x− x→ 0, which is equivalent to say
that x→ x (locally) for the nonlinear system. However, let us compute the gain kr,
according to the formula

kr = − 1

C(A−BK)−1B
= −0.08076, (37)

where C = [1 0], because we are interested in a constant value y = Y for the balloon’s
position, i.e., to y = x1.
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(b) (2pts) Write explicitly the controller to be implemented in the nonlinear system, and
verify that the operation point of Exercise 1.(c) is asymptotically stable.

SOLUTION:
From the controller for the linearized system δu = −Kδx, we can obtain the controller
u for the nonlinear system (8) using the operational point in (11), as follows:

u = δu+ u = −K(x− x) + u = −[0.005047 − 0.058441]

[
x1 − Y
x2 − 0

]
+ 1.5847. (38)

It follows that the nonlinear system (8) (after substitutions of the values in Table 1)
in closed-loop with the control scheme (38) is[
ẋ1
ẋ2

]
=

[
x2

−9.81− 0.7256x2 + 3.9066 (−0.005047(x1 − Y ) + 0.058441x2 + 1.5847)2

]
.

(39)
Compute the closed-loop equilibrium point x, which is the solution to[

x2
−9.81− 0.7256x2 + 3.9066 (−0.005047(x1 − Y ) + 0.058441x2 + 1.5847)2

]
=

[
0
0

]
.

(40)
Then, x2 = 0 and −9.81 + 3.9066 (−0.0001(x1 − Y ) + 1.5847)2=0, which results in
(x = (Y, 0)) as expected. To check whether or not this equilibrium point is stable,
consider the Jacobian of the closed-loop system (39) at x = x as follows

Acl =

[
0 1

−0.0394 −0.26898

]
, (41)

whose associated characteristic polynomial is

pcl(s) = s2 + 0.2689s+ 0.0394. (42)

Using the Routh-Hurwitz criterion we have

s2 1 0.0394
s1 0.2689 0
s0 b1 = 0.0394

Therefore, the equilibrium point x is an (locally) asymptotically stable equilibrium
point for the nonlinear system.

(c) (3pts) Design an observer and write it explicitly.

SOLUTION:
Recall the output equation matrix C = [1 0]. Then, the observability matrix is

W0 =

[
C
CA

]
=

[
1 0
0 1

]
, (43)

which clearly is full-rank and the pair (A,C) is observable. Take as target eigenvalues
for the observer to {−0.005 ± j1.25}. Using the duality observability/reachability
theorem and the Matlab command

Lo = place(A>, C>,−0.005± j1.25)>,

the observer’s gain L is given by L = [−0.7155, 2.08170]>. The explicit expression
of the observer is therefore

δ ˙̂x =

[
0 1
0 −0.7255

]
δx̂+

[
0

12.3812

]
δu+

[
−0.7155
2.08170

]
(y − δŷ). (44)

I used δx̂ instead of x̂, because the observer is designed for the linearized system2.

2If you fail to do this, I can understand that it is not clear for you what the Jacobian linearization is.
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(d) (2pts) Design a dynamic output-feedback controller and write it explicitly.

SOLUTION:
By the separation principle theorem, the observer and feedback gains, L and K can
be designed separately. Hence, items (b) and (c) solve this step. The explicit form of
the dynamic output feedback is

δ ˙̂x = (A−BK − LC)δx̂+Bkrr + Ly

δu = −Kδx̂+ krr
(45)

or

δ ˙̂x =

[
0.7155 1
−2.1442 −0.002

]
δx̂+

[
0

12.3812

]
r +

[
−0.7155
2.08170

]
y

δu = −0.00504δx1 + 0.0584δx2 − 0.0807r.

(46)

3. Exercise 3 (10pts). Consider the prototype second order system

P (s) =
ω2
n

s2 + 2ωnζs+ ω2
n

(47)

in closed-loop with the PID controller

C(s) = Kp +
Ki

s
+Kds. (48)

(a) Show that the PID controller allows arbitrary pole placement.

SOLUTION:
The loop transfer function L(s) = P (s)C(s) is given by

L(s) =
ω2
n

s2 + 2ωnζs+ ω2
n

(
Kp +

Ki

s
+Kds

)
=

ω2
n

s2 + 2ωnζs+ ω2
n

(
Kds

2 +Kps+Ki

s

)
=
ω2
n(Kds

2 +Kps+Ki)

s3 + 2ωnζs2 + ω2
ns

.

(49)

The closed-loop transfer function is

G(s) =
L(s)

1 + L(s)

=
ω2
n(Kds

2 +Kps+Ki)

ω2
n(Kds2 +Kps+Ki) + s3 + 2ωnζs2 + ω2

ns

=
ω2
n(Kds

2 +Kps+Ki)

s3 + (2ωnζ + ω2
nKd)s2 + (ω2

n + ω2
nKp)s+ ω2

nKi
.

(50)

By the Routh-Hurwitz criterion, it is clear that properly choosing the PID’s gains, the
closed-loop poles can be arbitrarily placed in the (left or right half) complex plane.

(b) Show that the system steady-state error is zero despite disturbances, see Figure 2.

SOLUTION:
The two constant inputs in the Laplace domain are given by R(s) = r/s and V (s) =

9
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Figure 2: Feedback system with reference r, load disturbance v, and noise n = 0.

v/s. Then, the error is given by

E(s) =
1

1 + L(s)
R(s)− P (s)

1 + L(s)
V (s)

=
s3 + 2ωnζs

2 + ω2
ns

s3 + (2ωnζ + ω2
nKd)s2 + (ω2

n + ω2
nKp)s+ ω2

nKi
R(s)

+
ω2
ns

s3 + (2ωnζ + ω2
nKd)s2 + (ω2

n + ω2
nKp)s+ ω2

nKi
W (s).

(51)

The steady-state error ess can be computed using the final value theorem

ess = lim
s→0

sE(s)

= lim
s→0

s(s3 + 2ωnζs
2 + ω2

ns)

s3 + (2ωnζ + ω2
nKd)s2 + (ω2

n + ω2
nKp)s+ ω2

nKi

r

s

− lim
s→0

sω2
ns

s3 + (2ωnζ + ω2
nKd)s2 + (ω2

n + ω2
nKp)s+ ω2

nKi

v

s
= 0

(52)

4. Exercise 4 (10pts). Consider the linearized model of Exercise 1.(d) with the parameter
in Table 1. Design a PI controller for the system such that the system has a phase margin
of ϕm = 30◦ and a crossover frequency of ωc = 2 rad/sec.

SOLUTION:
Let us compute the transfer function corresponding to the linear state equation given by
the pair (A,B) in (30), with output matrix C = [1 0], according to the formula

P (s) = C(sI −A)−1B

= [1 0]

([
s 0
0 s

]
−
[
0 1
0 −0.7255

])−1 [
0

12.3812

]
=

12.3812

s(s+ 0.7255)
=

12.3812

s2 + 0.7255s
.

(53)

Consider the PI controller in the frequency domain given by

C(s) = kp + ki
1

s
= kp

(
1 +

ki
kp

1

s

)
. (54)

First all, notice that the main goal of this problem is not to track a reference (with zero-
steady state), but to ensure frequency domain specifications for the controlled system.
This can be done3 in either open-loop or closed-loop.

3For open-loop control, imagine that you want a building (the plant P (s)) that can resist earthquakes. This
means that you need to add something (the controller C(S)) that modifies the frequency specifications (natural
frequency, band-width, phase margin, gain margin) of the building. You can do it in an passive or active manner.
For the first, typically springs and dampers are directly connected to the system, and no feedback may be required.
For the active approach, actuators are included, which require feedback, to compare to a given reference.
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For the open loop case, we consider the loop transfer function given by

L(s) = C(s)P (S) = 12.3812kp

(
1 +

ki
kp

1

s

)(
1

s2 + 0.7255s

)
, (55)

which already contains the controller transfer function C(s) acting on the plant P (s).
Thus, at the crossover frequency ω = ωc = 2rad/sec, we need to find kp and ki such that4

M = |L(jω)|ω=ωc = 1, and ∠L(jω)|ω=ωc + 180◦ = φm. (56)

To this end, we need first to compute L(jω). Then

L(jω) = 12.3812kp

(
1 +

ki
kp

1

jω

)(
1

(jω)2 + 0.7255jω

)
. (57)

The magnitude and phase of the transfer function L(jω), respectively, are

|L(jω)|ω=ωc = 12.3812kp

√
1 +

k2i
k2p

1

ω2
c

1√
ω4
c + 0.72552ω2

c

∠L(jω)|ω=ωc = arctan

(
− ki
kp

1

ωc

)
− arctan

(
−0.7255

ωc

) (58)

Now, let us find the gains kp and ki from conditions in (56). It yields the following two
equations, with ωc = 2rad/sec and φm = 30◦, and kp and ki the unknowns

12.3812kp

√
1 +

k2i
k2p

1

4

1√
16 + 2.1054

= 1

arctan

(
− ki
kp

1

2

)
− arctan (−0.36627) + 180◦ = 30◦

(59)

Solving for kp and kp we get the following values

kp = 0.3383, and ki = −0.3548kp = −0.12. (60)

Just to illustrate (no necessary in the exam), let us plot the Bode diagram.

10
-2

10
-1

10
0

10
1

10
2

-180

-135

-90

-45

0

P
h
a
s
e
 (

d
e
g
)

System: L

Phase Margin (deg): 30

Delay Margin (sec): 0.262

At frequency (rad/s): 2

Closed loop stable? No

Figure 3: Bode plot of the L(s) with the designed kp and ki.

Clearly, the system L(s) has the desired phase margin at the desired frequency. An im-
portant observation is that the first equation in (59) is quadratic, which means that we

4See slide 56 for the first condition, and slide 61 for the definition of φm; both of Lecture 16. Or, see equations
(9.5) and (9.6) of the book of Murray; the second in degrees.
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will get two values for kp = ±0.3383. We took the positive, because it adds the phase that
is needed to reach the desired margin. If you take the negative value of kp, you will get
the reduced angle. In any case, I take it as correct in both cases.

Now, if you prefer to design the controller, in a closed-loop manner (feedback). Then,
compute the closed-loop transfer function

G(s) =
L(s)

1 + L(s)

=
12.3812(kps+ ki)

s3 + 0.7255s2 + 12.3812kps+ 12.3812ki
,

(61)

take s = jω, and evaluate G(jω) as follows

G(jω) =
12.3812(ki + jkpω)

(12.3812ki − 0.7255ω2) + j(12.3812kpω − ω3)
. (62)

From here, the following step is to apply the magnitude and phase conditions in (56), but
for G(jω), and find the gains kp and ki.

5. Exercise 5 (10pts). Consider the linearized model of Exercise 1.(d) with the parameter
in Table 1.

(a) (4pts) Compute the exponential matrix of A.

SOLUTION:
The exponential matrix is computed using the Cayley-Hamilton method (see Slide 12
of Lecture 10, and Tutorial 6) with the formula

eAt = α0(t)I + α1(t)A+ · · ·+ α(t)An−1 =

n−1∑
k=0

αk(t)A
k. (63)

and

esit =
n−1∑
k=0

αk(t)s
k
i . (64)

where λi is the i-th eigenvalue of A. In this specific case, the system matrix A is of
2× 2 dimension. Hence, n = 2 and equations (63) and (64), respectively, become

eAt = α0(t)I + α1(t)A. (65)

and

es1t = α0(t) + α1(t)s1

es2t = α0(t) + α1(t)s2.
(66)

From (33), the eigenvalues of matrix A are s1 = 0 and s2 = −0.− 7255. Substitution
in (66), and solving for α1(t) and α2(t) yields

α0(t) = 1, and α1(t) = 1.3783(1− e−0.7255t). (67)

Finally, after substitution in (65), we get the exponential matrix

eAt =

[
1 1.3783(1− e−0.7255t)
0 1− 0.9999(1− e−0.7255t)

]
=

[
1 1.3783(1− e−0.7255t)
0 e−0.7255t

]
. (68)
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(b) (3pts) Consider u = −Kpx1 −Ki

∫ t
0 x1dτ +Kdx2. Write the closed-loop system.

SOLUTION:
For sake of completeness, let us rewrite the lineariized system of Exercise 1 (d),

δẋ =

[
0 1
0 − 1

2mCρAb

]
︸ ︷︷ ︸

A

δx+

[
0

Af

√
2ρg
mAb

]
︸ ︷︷ ︸

B

δu. (69)

Notice that the controller is given in this item is for the state x of the nonlinear
system, and not for the state δx for the linearization. Nevertheless, u is a linear
control law since it is written as the sum of linear operations. Thus, around the
operation point (x, u), the state x converges to δ, and so does the controller, i.e.,

u u δu = −Kpδx1 −Ki

∫ t

0
δx1dτ +Kdδx2. (70)

Now, because the integral operator is acting on the state δx1, it defines a new state,
which can be called δx3 =

∫ t
0 δx1dτ . By the fundamental theorem of calculus, we

have δẋ3 = δx1. It follows that system (69) in closed-loop with the controller (70) is
given by δẋ1δẋ2

δẋ3

 =

 0 1 0
−kp −0.7255 + kd ki

1 0 0

δx1δx2
δx3

 . (71)

(c) (3pts) What can you say if the degree of the numerator of a transfer function is bigger
than the degree of the denominator?

SOLUTION:
It means that the transfer function is improper. That is, there are more zeros than
poles. This is also related to lack of causality, in the signals and systems sense.
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